PROMPT/DELAYED GAMMA-RAY NEUTRON ACTIVATION ANALYSIS (PGAA/NAA) SYSTEM FOR TOTAL, NONDESTRUCTIVE, IN SITU, ELEMENTAL ANALYSIS USING A NEUTRON GENERATOR R.B. Firestone(rbf@lbl.gov), K-N. Leung, and B. Ludewigt Nuclear Science Division, Lawrence Berkeley National Laboratory MODERATED THERMAL **NEUTRONS** LBNL Neutron Generatror $X(n,\gamma)$ DETECTORS | C2-728 Mn -0.154 N -0.0228 | All -7.108 S -0.0158 | C3-0.0058 | All -7.108 S -0.0158 | C3-0.0058 | All -7.108 S -0.0059 PGAA uses thermal neutrons to induce prompt γ rays, unique for every element, for quantitative analysis. This technique is simultaneously sensitive to the entire periodic table. Detection limits typically range from ppb to 0.1% depending on cross section. The γ rays from decay of radioactive products produced by NAA can also be used for analysis. PGAA can be used to interrogate sealed containers because neutrons penetrate most materials. **PGAA Elemental Sensitivity** PGAA analysis of a deep-sea vent sample collected with the ALVIN submersible. Analysis was performed at the Budapest Reactor facility with a $10^6\,\text{n/s}$ beam. Additional γ rays up to 9 MeV were observed. D.L.Perry, R.B. Firestone, *et al*, J. Anal. At. Spectrom. **16**, 1 (2001). # First LBNL PGAA Spectrum with Neutron Generator (10⁷ n/s): Borated Polyethylene PGAA spectrum produced with prototype LBNL neutron generator. SEARCHING FOR | 545
b | 137327
0.846 | 138,9055
9.0 h
10.1 h | 178.49
28.7 b
10.3 b | 180,9479
0,079 h
6,1 h | 17.8 b
4.96 b | 186.207
43.6 b
11.4 b | 190.23
10.9 h
8.2 h | 192,217
3,70 h
5,6 h | 195,078
9,6 b
11,8 b | 196,96655
99 h
7,8 h | 200,59
384 b
11.1 b | 204,3833
3,44 b
10,0 b | 207.2
0.168 b | 200,98038
0,00963-
9,33- | [209] | [216] | |----------|-----------------|--------------------------------------|--|-------------------------------------|------------------|-----------------------------------|-----------------------------------|-------------------------------------|------------------------------------|----------------------------------|---------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-------| | Fr | 88 Ra
 226 | 89 Ac | 104 Rf
(261) | 105 Db
 262 | 106 Sg
 264 | 107 Bh
(264) | 108 Hs | 109 Mt
 268 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | | | | 58 Ce
100,116
1,78 h
2,50 h | 59 Pr
140,90768
11.5 b
2.54 b | 60 Nd
144.24
49.5 b
14.1 b | 61 Pm
(148) | 62 Sm
1806
5613 b
30.5 b | 63 Eu
151,961
280,5
8,15 | 64 Gd
197.25
4877016
165 b | 65 Tb
158,92534
23,44
694 | 66 Dy
162.50
488 b
94 b | 67 Ho
164,93032
3,50 h
8,6 h | 68 Er
167.26
158.6
9.0 h | 69 Tm
168,95431
82.6
63.6 | 70 Yb
173.04
35.76
18.66 | 71 Lu
174.967
24.06
7.06 | | | | | 90 Th
232,081
2.4 b | 91 Pa
231,03588 | 92 U
238,0289
3,37 b
9,4 b | 93 Np
(237) | 94 Pu
(244) | 95 Am
(249) | 96 Cm | 97 Bk | 98 Cf | 99 Es | 100Fm
 257 | 101Md
 258 | 102 No
(259) | 103 Lr
 262 | | * Per cm³ based on 0.01 captures per second assuming 10⁶ neutrons/cm² and neglecting gamma-ray detection efficiency **DATABASE:** A new database of 33,000 γ rays for PGAA analysis is being prepared by LBNL in collaboration with the IAEA and the Institute for Isotope and Surface Chemistry, Budapest. This database replaces the outdated Lone *et al* data (At. Data Nucl. Data Tables **26**, 511(1981).) Ratio of the strongest γ -ray intensities from our new compilation to those of Lone *et al.* About 25% of these γ rays were not observed by Lone. #### Comparison of certified (NIST) and PGAA measured concentrations in river sediment | | CERTIFIED | PGAA | | | | |---------|-----------------|-----------------|--|--|--| | Element | Concentration% | Concentration% | | | | | Cr | 2.96±0.28 | ≡2.96 | | | | | Fe | 11.3±1.2 | 11.5±0.3 | | | | | K | 1.2 | 1.4±0.1 | | | | | Ca | 2.9 | 3.0±0.1 | | | | | Cd | 0.00102±0.00009 | 0.00104±0.00003 | | | | | Mn | 0.078±0.010 | 0.077±0.011 | | | | | | | | | | | ## CONCEALED EXPLOSIVES #### PGAA ANALYSIS OF A CARGO CONTAINER In this example, the LBNL neutron generator is operated in D+D mode to detect 500 lbs of NH₄NO₃hidden in a cargo container. The γ -ray spectrum is calculated with the computer code MCNP assuming 2×10° incident neutrons are emitted next to a 40 ft cargo container. A single 6"x9" BGO detector is placed on the opposite side of the container. The 2.5 MeV neutrons from the source thermalize in theNH₄NO₃. This spectrum would be obtained in <0.1 s with a 10^{12} n/s LBNL neutron generator. The spectrum is dominated by the steel container walls, but gammas from nitrogen and hydrogen clearly visible. #### OTHER PGAA ANTITERRORISM APPLICATIONS: - •Forensic analysis of crime scenes - •Interrogation of nuclear materials - •Luggage screening - ·Stand-off detection of explosives - Landmine detection